Email updates

Keep up to date with the latest news and content from Biomarker Research and BioMed Central.

Open Access Methodology

Sensitive detection of BRAF V600E mutation by Amplification Refractory Mutation System (ARMS)-PCR

Tiangui Huang*, Jian Zhuge and Wenyong W Zhang*

Author Affiliations

Department of Pathology, Westchester Medical Center and New York Medical College, Valhalla, NY, 10595, USA

For all author emails, please log on.

Biomarker Research 2013, 1:3  doi:10.1186/2050-7771-1-3

Published: 16 January 2013



BRAF mutations occur in approximately 8% of all human cancers and approach 50% in melanoma and papillary carcinoma of thyroid. These mutations provide potentially valuable diagnostic, prognostic and treatment response prediction markers. A sensitive, specific, low-cost assay to detect these mutations is needed.


To detect BRAF V600E mutation in formalin-fixed, paraffin-embedded (FFPE) tissue, we developed a method using Amplification Refractory Mutation System (ARMS)-PCR. This method was designed to amplify three products in a single reaction tube: a 200 bp common product serving as an amplification control, a 144 bp BRAF V600E specific product, and a 97 bp wild-type (wt) specific product. The sensitivity of this method was determined to be as low as 0.5% for the BRAF V600E allele in a wild-type background. This method was successfully validated in 72 thyroid tumors. It detected V600E mutation in 22 out of 33 (67%) of the conventional papillary thyroid carcinoma (PTC), 8 out of 12 (75%) of the tall-cell variant of PTC, whereas none of the 10 follicular variant of PTC showed BRAF V600E mutation. In addition, none of the 14 follicular adenomas and 3 follicular carcinomas had BRAF V600E mutation. As a comparison method, direct dideoxy sequencing found only 27 out of 30 (90%) mutations detected by ARMS-PCR method, suggesting that this ARMS-PCR method has higher sensitivity.


Our ARMS-PCR method provides a new tool for rapid detection of BRAF V600E mutation. Our results indicate that ARMS-PCR is more sensitive than automated dideoxy sequencing in detecting low BRAF V600E allele burdens in FFPE tumor specimen. The strategy of this ARMS-PCR design may be adapted for early detection of point mutations of a variety of biomarker genes.